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Abstract 

The nonlinear Schrodinger equation (NSE) is a partial differential equation 

(PDE) with numerous applications in quantum mechanics. Analytical 

methods for the solution of NSE are almost impossible due to their 

complexity. Thus, the need for a numerical scheme to seek the 

approximate solution of the NSE. Hence, this paper considered the 

numerical solution of the NSE via the spectral collocation method (SCM) 

with Chebyshev orthogonal polynomials of the first kind. The scheme was 

efficiently constructed to solve the NSE equation with the aid of MAPLE 

18, and numerical evidence compared with Adomian Decomposition 

Method (ADM), Homotopy Analysis Transform Method (HATM) and 

Residual Power Series Method (RPSM) as available in the literature. The 

findings show that the SCM is an effective solver for NSE with rapid 

convergence to the exact solution as the parameter 𝑡 varies.  

 

Keywords: Schrodinger equation, Orthogonal polynomials, Chebyshev 

polynomials, collocation method, partial differential equation 

 

Introduction 

Differential equations found their relevance 

in almost every ramification of human 

endeavor, they form essential scientific tools 

in modeling physical and practical problems 

in the biological sciences, engineering, 

agricultural sciences, physical and social 

sciences (Adebiyi and Fatumo, 2006). The 

Schrodinger equation (SE)is a nonlinear 

partial differential equation that forms the 

basic building block in quantum physics. It 

has various applications in quantum 

mechanics and applied mathematics. The 

Schrodinger equation can be used to model 

several natural phenomena such as light 

propagation in fiber optics, pulses with 

dispersive effects whose shapes are preserve 

inside fiber, formation of monster waves on 

the surface of the ocean, propagation of 

waves in channels, electronic structure of 



Nigerian Journal of Science and Environment 2024 Volume 22 (2) 60 – 71       ISSN: 3043 – 4440  

https://doi.org/10.61448/njse222245 

 

61 
 

atoms and molecules, dynamics of a Bose-

Einstein condensate, among others 

(Ogundare, 2009; Mocz andSucci, 2016; 

Aksoyet al., 2013). 

Most partial differential equations that 

model real-life situations may not 

necessarily have a closed form 

solution;instead, numerical techniques are 

utilized to approximate the solutions.  Over 

the years numerical methods adopted for the 

Schrodinger equation have consistently 

evolved for the analysis of physical 

phenomena (Balaram, 2016; Balaramet al., 

2016). Some of these numerical techniques 

include,the B-Spline finite element methods, 

meshless method using collocation with 

radial basis function (Aksoyet al, 2013; 

Montegranarioet al., 2016), Crank-Nicolson 

schemes, Runge-Kutta methods in time, 

finite difference and finite element method 

in space (Antoine et al., 2011), Hopscotch 

method, Fourier Pseudo-spectral method and 

Split-step Fourier Transform (Neveenet al., 

2021). 

This paper aims to apply the spectral 

collocation method adopting 

Chebyshevpolynomials as trial functions to 

solve numerically the nonlinear Schrodinger 

equation shown below: 

𝑖𝑈𝑡 + 𝑈𝑥𝑥 + 𝛽|𝑈|2𝑈= 0,    (1.1) 

subject to the initial condition 

𝑈(𝑥, 0) = 𝑔(𝑥), 

where β is a positive constant term and 𝑈(𝑥, 

𝑡) is complex valued function of two real 

variables x, 𝑡.The Chebyshev nodes which 

are the zeros of the Chebyshev polynomial 

are used for the polynomial interpolation. 

Spectral Collocation Method for 

Nonlinear Schrodinger Equation 

We now consider the nonlinear Schrodinger 

equation of the form 

𝑖𝑢𝑡 + 𝑢𝑥𝑥 + 𝛽|𝑢|2𝑢 = 0,                       (2.1) 

subject to the initial condition 

𝑢(𝑥, 0) = 𝑔(𝑥),                                    (2.2) 

where β is a positive constant term and 

𝑢(𝑥, 𝑡) is complex valued function of two 

real variables 𝑥, 𝑡. 
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The nonlinear Schrodinger equation below 

in equation (2.1) - (2.2) was solved by AL-

Shareef et al. (2016) using Adomian 

decomposition method (ADM) 

 𝑖𝑢𝑡 + 𝑢𝑥𝑥 + 2|𝑢|2𝑢 = 0,           (2.3) 

with initial condition 

  𝑢(𝑥, 0) = 𝑒𝑖𝑥,                (2.4) 

with exact solution as 𝑢(𝑥, 𝑡) = 𝑒𝑖(𝑥+𝑡) 

The nonlinear Schrodinger equation below 

in equation (2.5) - (2.6) was solved by 

Zeliha, (2019) using Residual Power Series 

Method (RPSM) and Homotopy Analysis 

Transform Method (HATM) 

𝑖𝑢𝑡 + 𝑢𝑥𝑥 − 2|𝑢|2𝑢 = 0,                 (2.5) 

with initial condition 

𝑢(𝑥, 0) = 𝑒𝑖𝑥,                             (2.6) 

with exact solution as 𝑢(𝑥, 𝑡) = 𝑒(𝑥−3𝑡)𝑖 .                                                   

In reference to the focus of this work, we let 

the approximate solution to (2.1) be defined 

as (Njoseh and Mamadu, 2017a) 

𝑢𝑛(𝑥, 𝑡) =  ∑ 𝑎𝑟
𝑁
𝑟=0 𝑇𝑟(𝑥) ≅ 𝑢(𝑥, 𝑡)     (2.7) 

where 𝑇𝑟(𝑥), 𝑟 ≥ 0 is the rthChebyshev 

polynomial (Njoseh and Mamadu, 2016a, 

2016b and 2016c);Mamadu and Njoseh, 

2016; Mamaduet al., 2021)of the first kind 

valid in the interval −1 ≤ 𝑥 ≤ 1 and 𝑎𝑟 , 𝑟 ≥

0 are expansion coefficient (constants) 

which will be determined.  

Substituting equating (2.7) into (2.5), we 

have, 

𝑖
𝜕

𝜕𝑡
(∑ 𝑎𝑟

𝑁
𝑟=0 𝑇𝑟(𝑥)) +

𝜕2

𝜕𝑥2 (∑ 𝑎𝑟
𝑁
𝑟=0 𝑇𝑟(𝑥)) +

𝛽|(∑ 𝑎𝑟
𝑁
𝑟=0 𝑇𝑟(𝑥))|

2
(∑ 𝑎𝑟

𝑁
𝑟=0 𝑇𝑟(𝑥)) = 0    (2.8) 

We can now collocate at the zeros of 𝑇𝑟(𝑥) 

in equation (2.8) and obtain a set of (𝑛 + 1) 

equations in (𝑛 + 1) unknown comprising 

of 𝑎𝑟 , 𝑟 ≥ 0 (Njoseh and Mamadu, 2017b). 

A matrix solver, which in this case, is the 

Gaussian elimination method is employed to 

solve the resulting linear algebraic equations 

for a unique determination of the unknown 

coefficients in the approximate solution. 

Substituting the known coefficients into 

(2.7) generates the required approximate 

solution for the problem (2.1). 

Numerical Examples 
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We consider the following test problems to 

test the accuracy and convergenceof the 

method as discussed in the previous section. 

MAPLE 18 will be adopted to carry out all 

numerical computations and simulation via 

the prescribed methodology discussed 

earlier for various values of  𝑁. 

Test Problem 1.  Consider the equation 

nonlinear Schrodinger equation (Al-

Shareefet al., 2016)  

 𝑖𝑢𝑡 + 𝑢𝑥𝑥 + 2|𝑢|2𝑢 = 0,        (3.1) 

with initial condition 

  𝑢(𝑥, 0) = 𝑒𝑖𝑥,      (3.2) 

with exact solution as 𝑢(𝑥, 𝑡) = 𝑒𝑖(𝑥+𝑡). 

Test Problem 2. Consider the equation 

nonlinear Schrodinger equation(Zeliha, 

2019) 

     𝑖𝑢𝑡 + 𝑢𝑥𝑥 − 2|𝑢|2𝑢 = 0,                  (3.3) 

with initial condition 

 𝑢(𝑥, 0) = 𝑒𝑖𝑥,       (3.4) 

with exact solution as 𝑢(𝑥, 𝑡) = 𝑒(𝑥−3𝑡)𝑖 . 

Applying spectral collocation method for 

𝑁 = 3, results are presented in the tables 

below with the aid of MAPLE 18. 

Computational Results for Test Problem 1: 

Table 4.1 Comparison of Result between Exact and Approximate solution at t=0.03 

X Exact solution Approximate Solution Absolute Error 

0 0.9995500337 0.9958096307 3.022781247E-8 

0.1 0.9915618937 0.9911757226 2.988046106E-8 

0.2 0.9736663950 0.9772739981 2.964126513E-8 

0.3 9.94604234435 0.9541044574 2.971214900E-8 

0.4 0.9089657497 0.9216671004 3.020388637E-8 

0.5 0.8628070705 0.8799619271 3.103871867E-8 

0.6 0.8080275083 0.8289889375 3.1909185726E-8 

0.7 0.7451744023 0.7687481316 3.23114580710E-8 

0.8 0.6748757601 0.6992395075 3.162558031E-8 

0.9 0.5978339823 0.6204630710 2.923069677E-8 

1.0 0.548188450 0.5324188163 2.477303906E-8 
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Table 4.2 Comparison of Result between Exact and Approximate solution at t=0.1 

X Exact solution Approximate Solution Absolute Error 

0 0.9950041653 0.9958096307 9.983666588E-8 

0.1 0.9800665778 0.9911757226 9.9535044449E-8 

0.2 0.9553364891 0.9772739981 9.941424557E-8 

0.3 9.9210609940 0.9541044574 9.961300485E-8 

0.4 0.8775825619 0.9216671004 1.001794704E-7 

0.5 0.8253356149 0.8799619271 1.01098695E-7 

0.6 0.7648421873 0.8289889375 1.018655644E-7 

0.7 0.6967067093 0.7687481316 1.02266467E-7 

0.8 0.6216099683 0.6992395095 1.016090190E-7 

0.9 0.5403023059 0.6204630710 9.915106224E-8 

1.0 0.4535961214 0.5324188163 9.406942452E-8 

 

Table 4.3 Comparison of Result between Exact and Approximate solution at t=0.5 

X Exact solution Approximate Solution Absolute Error 

0 0.8775825619 0.9958096307 4.937878966E-7 

0.1 0.8253356149 0.9911757226 4.935810063E-7 

0.2 0.7648421873 0.9772739981 4.937013922E-7 

0.3 0.6967067093 0.9541044574 4.942287738E-7 

0.4 0.6216099683 0.9216671004 4.951359945E-7 

0.5 0.5403023059 0.8799619271 4.962574089E-7 

0.6 0.4535961214 0.8289889375 4.972672907E-7 

0.7 0.3623577545 0.7687481316 4.976701428E-7 

0.8 0.2674988286 0.6992395095 4.968028959E-7 

0.9 0.1699671429 0.6204630710 4.938472493E-7 

1.0 0.07073720167 0.5324188163 4.878494957E-7 
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Table 4.4 Comparison of result between SCM and ADM at t=0.03, 0.1 and 0.5 

X SCM Absolute 

Error at t=0.03 

ADM Absolute 

Error at t=0.03 

SCM Absolute 

Error at t=0.1 

ADM Absolute 

Error at t=0.1 

SCM Absolute 

Error at t=0.5 

ADM Absolute 

Error at t=0.5 

0 3.022781247E-8 3.370059347E-8 9.983666588E-8 4.1661332570E-6 4.937878966E-7 2.5955039E-3 

0.1 2.988046106E-8 3.370059347E-8 9.9535044449E-8 4.1660562770E-6 4.935810063E-7 2.5955040E-3 

0.2 2.964126513E-8 3.381153649E-8 9.941424557E-8 4.1661206330E-6 4.937013922E-7 2.5955039E-3 

0.3 2.971214900E-8 3.374685170E-8 9.961300485E-8 4.1660544070E-6 4.942287738E-7 2.5955038E-3 

0.4 3.020388637E-8 3.377217790E-8 1.001794704E-7 4.1660937870E-6 4.951359945E-7 2.5955040E-3 

0.5 3.103871867E-8 3.379127106E-8 1.01098695E-7 4.1661050360E-6 4.962574089E-7 2.5955038E-3 

0.6 3.1909185726E-8 3.370356064E-8 1.018655644E-7 4.1660713930E-6 4.972672907E-7 2.5955040E-3 

0.7 3.2311458071E-8 3.375440712E-8 1.02266467E-7 4.1660511770E-6 4.976701428E-7 2.5955038E-3 

0.8 3.162558031E-8 3.373499667E-8 1.016090190E-7 4.1662206490E-6 4.968028959E-7 2.5955036E-3 

0.9 2.923069677E-8 3.376684765E-8 9.915106224E-8 4.1661306230E-6 4.938472493E-7 2.5955037E-3 

1.0 2.477303906E-8 3.370830758E-8 9.406942452E-8 4.1660782630E-6 4.878494957E-7 2.5955036E-3 

 

Computational Results for Test Problem 2: 

Table 4.5 Comparison of Result between Exact and Approximate solution at t=0.01 

X Exact solution Approximate Solution Absolute Error 

0.01 0.999800067 0.5324651554 4.674419845E-7 

0.02 0.999950004 0.5326041726 4.674524177E-7 

0.03 1.000000000 0.5328358680 4.681245000E-7 

0.04 0.999500004 0.5331602416 4.694552837E-7 
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0.05 0.9998000067 0.5335772933 4.714390003E-7 

 

 

 

Table 4.6 Comparison of Result between Exact and Approximate solution at t=0.02 

X Exact solution Approximate Solution Absolute Error 

0.01 0.9987502604 0.5324651554 4.679966045E-7 

0.02 0.9992001067 0.5326041726 4.670246957E-7 

0.03 0.9995500337 0.5328358680 4.667141664E-7 

0.04 0.9998000067 0.5331602416 4.670663392E-7 

0.05 0.9999500004 0.5335772933 4.680796352E-7 

 

Table 4.7 Comparison of Result between Exact and Approximate solution at t=0.03 

X Exact solution Approximate Solution Absolute Error 

0.01 0.9968017063 0.5324651554 4.695718276E-7 

0.02 0.9975510003 0.5326041726 4.676234136E-7 

0.03 0.9982005399 0.5328358680 4.663302456E-7 

0.04 0.9987502604 0.5331602416 4.656978953E-7 

0.05 0.9992001047 0.5335772933 4.657290809E-7 

 

Table 4.8 Comparison of Result between Exact and Approximate solution at t=0.04 

X Exact solution Approximate Solution Absolute Error 

0.01 0.9939560980 0.5324651554 4.721560316E-7 

0.02 0.9950041653 0.5326041726 4.692441059E-7 

0.03 0.9959527330 0.5328358680 4.669756142E-7 

0.04 0.9968017063 0.5331602416 4.653601891E-7 

0.05 0.9975510003 0.5335772933 4.644047823E-7 

 

Table 4.9 Comparison of Result between Exact and Approximate solution at t=0.05 
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X Exact solution Approximate Solution Absolute Error 

0.01 0.9902159962 0.5324651554 4.757304723E-7 

0.02 0.9915618937 0.5326041726 4.718747947E-7 

0.03 0.9928086359 0.5328358680 4.686454418E-7 

0.04 0.9939560980 0.5331602416 4.660557650E-7 

0.05 0.9950041653 0.5335772933 4.641167187E-7 

Table 4.10: Comparison of Results between SCM and HATM t=0.01, 0.02 and 0.03 

X SCM Absolute 

Error at t=0.01 

HAMT 

Absolute 

Error at 

t=0.01 

SCM Absolute 

Error at t=0.02 

HAMT 

Absolute 

Error at 

t=0.02 

SCM Absolute 

Error at t=0.03 

HAMT 

Absolute 

Error at 

t=0.03 

0.01 4.674419845E-7 2.28657E-1 4.679966045E-7 4.97242E-2 4.695718276E-7 7.52547E-1 

0.02 4.674524177E-7 2.28623E-1 4.670246957E-7 4.9884E-1 4.676234136E-7 7.59856E-1 

0.03 4.681245000E-7 2.28304E-1 4.667141664E-7 4.99449E-2 4.663302456E-7 7.65568E-1 

0.04 4.694552837E-7 2.27701E-1 4.670663392E-7 4.99065E-2 4.656978953E-7 7.69625E-1 

0.05 4.714390003E-7 2.26822E-1 4.680796352E-7 4.97691E-2 4.657290809E-7 7.71988E-1 

 

Table 4.11: Comparison of Results between SCM and HATM t=0.04 and 0.05 

X SCM Absolute Error 

at t=0.04 

HAMT Absolute 

Error at t=0.04 

SCM Absolute Error 

at t=0.05 

HAMT Absolute 

Error at t=0.05 

0.01 4.721560316E-7 9.11458E-1 4.757304723E-7 9.05243E-2 

0.02 4.692441059E-7 9.29106E-1 4.718747947E-7 9.25587E-2 

0.03 4.669756142E-7 9.45461E-1 4.686454418E-7 9.46623E-2 

0.04 4.653601891E-7 9.6036E-1 4.660557650E-7 9.68162E-2 

0.05 4.644047823E-7 9.73656E-1 4.641167187E-7 9.90013E-2 
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Table 4.12: Comparison of Results between SCM and RPSM t=0.01, 0.02 and 0.03 

X SCM Absolute 

Error at t=0.01 

RPSM 

Absolute 

Error at 

t=0.01 

SCM Absolute 

Error at t=0.02 

RPSM 

Absolute 

Error at 

t=0.02 

SCM Absolute 

Error at t=0.03 

RPSM 

Absolute 

Error at 

t=0.03 

0.01 4.674419845E-7 1.01148E-6 4.679966045E-7 7.68811E-3 4.695718276E-7 2.4201E-4 

0.02 4.674524177E-7 3.02372E-6 4.670246957E-7 6.45381E-5 4.676234136E-7 2.45929E-4 

0.03 4.681245000E-7 5.00575E-6 4.667141664E-7 1.28354E-4 4.663302456E-7 7.31412E-4 

0.04 4.694552837E-7 6.93777E-6 4.670663392E-7 1.90888E-4 4.656978953E-7 1.20959E-3 

0.05 4.714390003E-7 8.80046E-6 4.680796352E-7 2.51515E-4 4.657290809E-7 1.67567E-3 

 

Table 4.13: Comparison of Results between SCM and RPSM t=0.04 and 0.05 

X SCM Absolute 

Error at t=0.04 

RPSM Absolute 

Error at t=0.04 

SCM Absolute 

Error at t=0.05 

RPSM Absolute 

Error at t=0.05 

0.01 4.721560316E-7 2.02148E-3 4.757304723E-7 9.13486E-3 

0.02 4.692441059E-7 1.94821E-3 4.718747947E-7 2.97814E-3 

0.03 4.669756142E-7 2.06025E-3 4.686454418E-7 3.20833E-3 

0.04 4.653601891E-7 4.08043E-3 4.660557650E-7 9.36275E-3 

0.05 4.644047823E-7 6.05985E-3  4.641167187E-7 1.54236E-2 
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Discussion 

We have implemented the spectral 

collocation method (SCM) for the numerical 

solutions of nonlinear Schrodinger equation. 

Basically, Chebyshev polynomials were 

employed as trial functions in the 

approximation of the analytic solution of 

these problems. SCM was solved along the 

analytic solution for comparison purposes. 

In the Test Problem 1 and 2, the SCM was 

found to converge rapidly to the exact 

solution in as much as the parameter 𝑡 varies 

as shown in the Tables 4.1 to 4.3 and 4.5 to 

4.9. For instance, maximum errors of 

order10−8  at all values of 𝑡 were obtained 

for Test Problem 1, but the smaller the value 

of t, the better the rate of convergence. This 

suggests that convergence is time dependent.  

However, for Test Problem 2, maximum 

errors of order 10−7at all values of 𝑡 were 

recorded, which also shows rapid 

convergence at all points, but convergence 

result is not time dependent. Solutions to 

both test problems are said to be stable. 

Also, for Test Problem 1, SCM was 

compared to the results obtained from ADM 

as computed by AL-Shareef et al. (2016). 

SCM recorded maximum errors of order 

10−8, 10−8 and 10−7 at t=0.03, 0.1 and 0.5 

respectively why ADM recorded maximum 

errors of order 10−8, 10−6 and 10−3 at 

t=0.03, 0.1 and 0.5 respectively. This shows 

that SCM have higher convergence rate than 

ADM. 

Furthermore, for Test Problem 2, SCM was 

compared to the results obtained through 

RPSM and HATM by Zeliha (2019). RPSM 

achieved maximum errors of order  

10−6 , 10−5, 10−4 𝑎𝑛𝑑 10−3 at t=0.01, 0.02, 

0.03 and 0.05 and SCM recorded maximum 

error order of 10−6 at every value of t. Both 

schemes have the same convergence rate at 

𝑡 =0.01, but error increases as the value of t 

increases for RPSM, which implies that the 

lower the value of t, the better the 

convergence, but SCM maintain the same 

convergence rate at all points. However, for 

HATM, maximum error order of 10−2 at 
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𝑡 = 0.02 and 0.05 were reported as 

compared to SCM with maximum error 

order of 10−6 .  

Conclusion 

We have considered the numerical solution 

of nonlinear Schrodinger equation using SCM. 

So far, it has been well established that the 

method is an effective solver for nonlinear 

Schrodinger equations and is highly 

accurate. It is also evident that the method 

offers several advantages which include, 

among others; cost-effectiveness as no extra 

interpolation is required in order to achieve 

several outputs, ease of implementation, 

easy to program and excellent rate of 

convergence. 
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